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Anomalous diffusion in a running sandpile model
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To explore the character of underlying transport in a sandpile, we have followed the motion of tracer
particles. Moments of the distribution function of the particle positions,^ux(t)2x(0)un&5D0tnn(n), are deter-
mined as a function of the elapsed time. The numerical results show that the transport mechanism for distances
less than the sandpile length is superdiffusive with an exponentn(n) close to 0.75, forn,1.
@S1063-651X~99!17410-5#

PACS number~s!: 52.55.Fa, 52.55.Hc, 52.35.Ra
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I. INTRODUCTION

Some of the phenomena observed in plasmas confine
magnetic fields suggest that a broad range of space and
scales play an essential role in the dynamics of the plasm
particular, transport of particles and energy induced by
bulence has features that are not explained by local diffu
transport models. One possible explanation@1,2# is that high-
temperature magnetically confined plasmas are close to
ginal stability, and their dynamics are governed by se
organized criticality~SOC! @3#.

Results of the analysis of fluctuation data from seve
experiments, including tokamaks, stellarators, and reve
field pinch, showed the self-similar character of the elect
static fluctuations with a self-similarity parameter,H, in the
range 0.6 to 0.74. There is also evidence of radial corr
tions over distances longer than the correlation length of
fluctuations@4#. Such a character of the plasma edge fluct
tions is consistent with plasma transport by avalanches
though it is not the only possible mechanism that may
plain these observations. Further analysis of data is nee
in particular the study of radial correlations of the fluctu
tions and turbulent fluxes.

Three-dimensional calculations of plasma turbulen
based on different dynamical mechanisms have shown s
of the characteristic SOC behavior@5,6#. The complexity of
these calculations and the large amount of time consume
them do not yet allow the accumulation of the statist
needed for a detailed and systematic study of these pro
ties. However, their results have been consistent with res
from simple cellular automata calculations based on the
namics of the sandpile@3,7,8#. Such models suggest that th
transport processes may be dominated by anomalous d
sion @9–11#. Anomalous diffusion has also been shown to
a possible plasma transport mechanism when a mixtur
magnetic islands and stochastic regions are present in
plasma volume. If plasma transport has an SOC chara
anomalous diffusion may be present even with unbro
magnetic surfaces.

To explore the character of underlying transport in a sa
pile, we have followed the motion of tracer particles in
PRE 601063-651X/99/60~4!/4770~9!/$15.00
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running sandpile. Several moments,^ux(t)2x(0)un&, of the
distribution of the particle radial locations have been det
mined as well as their dependence on the elapsed t
^ux(t)2x(0)un&5D0tnn(n). Determination of the exponentn
is important for constructing plasma transport models t
incorporate the multiplicity of time scales involved in tran
port, which is the ultimate aim of this research.

To understand the dynamical mechanism of the part
transport, we have to look in detail at the properties of
particle orbits. When an avalanche occurs, particles are
ried outward. The radial excursion of the particles, or fligh
depends on the radial extent of the avalanche. In the abs
of an avalanche, the particles remain at a fixed radial lo
tion. Sometimes particles get buried in the sand, and the t
they spend in a given position can be very long. We c
those resting periods trapping times. From the informat
on the particle motion, we can calculate the probability d
tribution function~PDF! of both the particle flights and the
particle trapping times. Similar transport studies of trac
particles in a rice pile have already been carried out@12# for
the Oslo rice pile@13#. However, the rice pile dynamics ar
quite different from the sandpile models that have been u
in analogy to plasma transport. The main differences ar
distributed particle source versus a localized one, the num
of particles tumbling at the unstable locations, and a rand
change of the critical slope in the rice pile. These differen
probably account for major differences found in the trac
particle transport.

In this paper, we have done a numerical analysis of
PDFs, their scaling with the sandpile parameters, and a
termination of their self-similarity parameters. We ha
found that the particle orbits in a running sandpile syst
have some peculiar differences when compared to other
namical systems.

~1! The sandpile has a finite length,L, and it is nonperi-
odic. The particle dynamics must incorporate the fin
length scaling.

~2! The PDF of flights has no obvious algebraic tail, a
boundary effects are important. A suitable change of varia
is required to obtain self-similarity.
4770 © 1999 The American Physical Society
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PRE 60 4771ANOMALOUS DIFFUSION IN A RUNNING SANDPILE MODEL
In spite of these differences, it is possible to determine
superdiffusion exponent in terms of the decay index of
PDFs.

Previous calculations of diffusivities in a running sandp
were based on the renormalization of a Burgerslike fl
equation@1,8#. They were done in the hydrodynamic limi
the avalanche-overlapping regime. They showed that tra
port had a ballistic character, that isn51. These calculations
corresponded to continuously moving avalanches and did
include the effect of trapping time for the particles. The lat
is responsible for the reduction in the value ofn.

The rest of this paper is organized as follows. In Sec.
the sandpile algorithm used in the present calculation
described. The results of the tracer particle transport are
sented in Sec. III. We discuss the form of the PDFs of
trapping time and flights in Sec. IV. Based on these PD
we present in Sec. V an interpretation of the transport res
Finally, the conclusions of this paper are given in Sec. V

II. SANDPILE MODEL

The running sandpile model has been suggested as a
digm for SOC turbulent plasma transport in magnetic c
finement devices. The sandpile model has the instability g
dients represented by the slope of the sandpile, while
turbulent transport is modeled by the local amount of sa
that falls ~overturns! when the sandpile becomes locally u
stable. A random ‘‘rain’’ of sand grains drives the sandpi
This drive models the input power/fuel in the confineme
system. The sandpile model allows us to study the dynam
of the transport independent of both the local instabi
mechanism and the local transport mechanism. Becaus
the relative simplicity of the model, we are also able to
very long time calculations and collect reasonably large
tistical samples.

A standard cellular automata algorithm@7# is used to
study the dynamics of the driven sandpile. The domain
divided intoL cells, which are evolved in steps. The numb
of sand grains in a cell ishn , called the height of celln. We
take as radial position the valuen that identifies the cell. The
local gradient isZn , the difference betweenhn and hn11 ,
and Zcrit is the critical gradient. The sandpile evolution
governed by the following simple set of rules:

~1! First, sand grains are added to the cells with a pr
ability p0 . For each cell, a random number 0<p<1 is
drawn; if p>12p0 , then

hn5hn11, ~1!

otherwise, the heighthn is not changed.
~2! Next, all the cells are checked for stability agains

simple stability rule and either flagged as stable,Zn,Zcrit ,
or not,Zn>Zcrit .

~3! Finally, the cells are time advanced, with the unsta
cells overturning and moving their excess ‘‘grains’’ to a
other cell. That is, ifZn>Zcrit , then

hn5hn2Nf

~2!

hn115hn111Nf .
e
e

d

s-

ot
r

I,
is
e-
e
,

s.

ra-
-
a-
e
d

.
t
cs

of

-

is
r

-

e

With Nf , it is the amount of ‘‘sand’’ that falls in an over
turning event. In terms of the physical quantities we asso
ate with turbulent systems, each cell can be thought of as
location of a local turbulent fluctuation~eddy!. Zcrit is the
critical gradient at which fluctuations are unstable and gro
andNf is the amount of ‘‘gradient’’ that is transported by
local fluctuation~local eddy-induced transport, for example!.
The average sandpile profile is equivalent to the mean t
perature or density profile, while the total number of sa
grains in the pile~the total mass! is the total energy and/o
particle content of the device. At any given time, the loc
flux at a radial position is either zero, if this position
stable, orNf , if it is unstable. Three-dimensional turbulenc
models have been used to compare with the running sand
model. The comparison shows strong similarity with the a
lanche distribution, power spectrum of fluxes, and subcriti
transport in the limit of low collisional dissipation@5#.

To follow particle orbits in the running sandpile, we fir
characterize the individual particle by its radial positionx
5n, wheren is the cell in which the particle is located, an
z is its distance from the top of the pile in this cell. We giv
each particle, characterized by an indexi, a starting cell po-
sition, xi , and we locate the particle on the surface of t
sandpile, that is withzi50. As the sandpile evolves in time
the particles move following the rules.

~1! If a grain of sand is dropped at a location where the
is the particlei, zi→zi11.

~2! If a cell is unstable,Zn>Zcrit , and contains the par
ticle i, then there are two possibilities:

~a! If zi.Nf21, thenzi→zi2Nf . That is, in this case,
the particle lies buried deep in the sandpile and does
move. Because the grains of sand on top of the particle
down the slope, the particle comes closer to the top.

~b! If zi,Nf , then xi→xi11, andzi takes a value be-
tween 0 andNf21 with equal probability. That is, the par
ticle is one of the grains to move to the next cell.

An example of a particle moving along a sandpile
shown in Fig. 1. Note that once the particle reaches the sa
pile boundary, it is put back in again at the same init
position.

Figure 1 shows that during some time periods partic
move very fast. However, there are also long waiting tim
periods. Looking with more detail to the orbits by expandi

FIG. 1. Radial position versus time for a particle in a sandp
with L51000,Nf53, andZcrit510.
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4772 PRE 60CARRERAS, LYNCH, NEWMAN, AND ZASLAVSKY
the time scale~Fig. 2!, we see that the large excursions out
the pile are caused by particle flights of all sizes. When
avalanche occurs, particles are carried outward. The ra
excursion of the particles, or flights, depend on the rad
extent of the avalanche. In absence of an avalanche, the
ticles remain at a fixed radial location. Sometimes partic
get buried in the sand, and the time they spend in a gi
position can be very long. We will call those resting perio
trapping times. This is a situation very similar to the o
encountered in simple dynamical models@10,11#.

In Ref. @13#, the concept of particle transit time was in
troduced as the time taken for a grain of sand to go across
sandpile. The averaged transit time over all particle trajec
ries is the equivalent of a particle confinement time,tc . This
is an important time scale to take into account in our tra
port studies.

III. ANOMALOUS DIFFUSION

To investigate the dynamics of particles moving in
sandpile, we have followed orbits of tracer particles and c
culated the ensemble average of the square of the disp
ment as a function of time. This allows the evaluation of

^@x~ t !2x~0!#2&5D0t2v. ~3!

Here, the angular brackets indicate ensemble averaged
the particle tracers. From Eq.~3! we can, in principle, deter
mine whether the diffusion is normal,n50.5, or anomalous
nÞ0.5. The calculations are done for a running sandpile w
Nf53, andZcrit510. Four sandpile lengths have been co
sidered,L5100, 316, 1000, and 5000. We have also var
the probabilityp0 in the range 231024 to 1022.

For the particle transport studies, one of the main pr
lems is understanding the impact of the particle initial co
ditions and how to average them. In the sandpile dynam
there are very few degrees of freedom. For a given parti
there is its initial position and two values of the velocity, 0
1. If a few particles are initialized close together, they can
swept away by the same avalanches, and their motion ca
correlated for quite a long time. To avoid these correlatio
only a few particles can be initialized simultaneously. W
have done the calculations by successively following ma
bunches of particles, with each bunch consisting of onl

FIG. 2. Expanded view of a short time period for the partic
evolution shown in Fig. 1.
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few of them. This has been done in such a way that the t
number of particles included is about 20 000 for each se
sandpile parameters. The results are averaged over the
ticles in each bunch and over all bunches.

We have defined the particle tracers in two different wa
One way is by marking particles that are already in the sa
pile and following their trajectory. Another way is by addin
the tracers to the sandpile as grain drops and following th
trajectories. In both cases, as the tracers reach the boun
of the sandpile, tracers are added or marked inside. The
sition of the tracers is kept growing as if the tracer parti
continues moving outside and beyond the sandpile bound
In this way, the number of tracers being followed rema
constant. The slow addition of tracers to the top of the sa
pile was the right way to solve the confinement problem
the Oslo sandpile@13#. However, in our case, this ap
proach may distort the asymptotic time dependence
^@x(t)2x(0)#2&, particularly, when the input particle flux
Lp0 , is very small. The addition of tracers is not a unifor
process and may cause a modification of the equilibri
profile and an overall drift of the parameters. Because th
are also transient effects at short times, in the case of
addition of tracers it is difficult to determine a priori th
proper time range in which to make the determination of
exponentn.

Another important effect for the determination ofn is the
initial localization of the tracer particles. If the particle tra
ers are initialized very close to the top of the sandpile, let
say in the upper 10%, there is a very strong transient in
calculation ofn, and it takes a long time~longer than the
averaged particle confinement time! to relax to its asymptotic
value. This effect is shown in Fig. 3, where the instantane
value ofn,n̂(t), calculated as

n̂~ t !5
d ln^@x~ t !2x~0!#2&

d ln t
, ~4!

is plotted for initialization within 10% and 50% of the lengt
of the sandpile. In this figure,n̂(t) converges for both ini-

FIG. 3. Instantaneous value ofn, n̂(t), for particle tracers ini-
tialized within 10% and 50% of the length of the sandpile. In bo
cases,n̂(t) converges to the same valuen̂'0.74, but the transien
phase is considerably longer in the first initialization.
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PRE 60 4773ANOMALOUS DIFFUSION IN A RUNNING SANDPILE MODEL
tializations to the same valuen̂'0.74, but the transient phas
is considerably longer in the first case.

We found that the best way of initializing the partic
tracers for the transport studies is to use a few marked tra
randomly initialized over the upper 50% of the sandpi
This allows the determination of the asymptotic time beh
ior of ^@x(t)2x(0)#2& over at least two decades of time. W
checked afterward that the same values for the exponen
obtained when we drop particles in the sandpile. In determ
ing the diffusivity exponent, we follow particles for distanc
that are long compared with the cell size, but in average
longer than a few times the sandpile length. The results
calculating ^@x(t)2x(0)#2& for different sandpile lengths
and keepingLp051.0 are shown in Fig. 4. The nearl
straight line of the results in the log-log plot indicates th
the relation is essentially a power law. We have determi
the exponentn by averaging the functionn̂(t) over t
,2tc . For all the cases we have considered, the valuesn
obtained by this method are summarized in Fig. 5. We h

FIG. 4. Ensemble average of the square of the displacement
function of time for sandpiles of different lengths withLp051.0.

FIG. 5. Anomalous diffusion exponent as a function of t
length of the sandpile,L, for different values ofp0 .
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also calculated the exponentn for the case of the variance i
the radial position of the particles,^@x(t)2^x(t)&#2&. The
results clearly show an increasing trend, in the logarithm
scale, for ^@x(t)2x(0)#2&; the trend is less clear fo
^@x(t)2^x(t)&#2&.

A reason for the slow increase of the exponentn with the
sandpile size is that the probability distribution function
the particle positions at different times,P(x,t), has different
similarity scaling for largex and smallx. That means that a
simple scaling of the probability distribution of the form
P(x,t)5t2n F(x/tn) is not possible for all scales oft with
the samen. In particular, for the case of the sandpil
P(x,t)50 for x.L. This finite length effect breaks the sel
similarity of P. To better determinen, we have calculated
other moments of the distribution function@14#, that is,
^ux(t)2x(0)un& for both then integer greater than 1 and th
n fractional smaller than 1. In this case, we have

^ux~ t !2x~0!un&5D0tnn~n!, ~5!

and we can make a determination ofn(n). In Fig. 6, there is
an example of the calculatedn(n) for a sandpile ofL
51000 andp050.001. The figure shows that there are tw
asymptotic regions, the lown and highn regions. They pro-
vide information on two regions of the probability distribu
tion function, for lowx and highx, respectively. Note that in
the case of the sandpile,n(n) for high n is smaller thann(n)
for low n. This situation is opposite the situation calle
strong anomalous diffusion in Ref.@14#. For largen, n(n)
tends to 0.5. A possible interpretation of these results
lows. For a particle moving in the sandpile with positionx
,L, the flight length may be the same size as the part
position. Therefore, this particle does not yet know that th
is a limit in the size of a flight. When summing over flight
the distribution of sums is possibly close to a stable Le
distribution. However, a particle that has moved far away
distance such thatx@L, knows that the flights are smalle
thanL. The particles have a distribution that is truncated a
finite length. When partial sums of flights are done to calc

s a FIG. 6. Calculated value ofn(n) as a function ofn for a sand-
pile of L51000 and p050.001. The figure shows the tw
asymptotic regions forn.
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4774 PRE 60CARRERAS, LYNCH, NEWMAN, AND ZASLAVSKY
late the particle motion, the particle positions no longer ha
a Levylike distribution. Because of the truncation, the va
ance of the flights is finite, and the successive sums are
tributed close to a Gaussian@15#. Therefore, then@1 mo-
ments that sample thesex.L particle positions should scal
with an index ofn'0.5. Note that then.1 regime is only
the result of the way we treat particles when they reach
sandpile boundary. For lown the value ofn is larger than
0.5. This is the relevant regime for the sandpile calculat
because it describes the transport process within the sand
that is forx,L. The values ofn(n) for all cases considere
are plotted in Fig. 7. Forn,1, the averaged value isn(n)
50.7460.05, andn(n)50.5660.07 forn.1. The error bars
correspond to one standard deviation of the values plotte
Fig. 7. Therefore, transport is superdiffusive becausen(n)
.0.5, but does not reach to ballistic level,n51. For n,1,
there is practically no difference between the exponentsn(n)
obtained by fitting the momentŝux(t)2x(0)un& and the
ones obtained from fittinĝux(t)2^x(t)&un&.

We can also look at the particle transport problem from
global perspective. Following Ref.@12#, we calculate the
PDF of the particle transit time, that is, the time taken fo
tracer particle to move across the whole sandpile. The P
of the transit time has a clear algebraic tail, as can be see
Fig. 8, with a decay indexbT52.1560.13, very close to the
value obtained for the Oslo sandpile@12#. To extract the size
dependence of the confinement time is not straightforwa
The reason is that there is anL dependence through the siz
and another one through the flux of particles in the sandp
Lp0 . For a purely diffusion process, the confinement tim
scales asM /S, where M is the total mass of the pile,M
'ZaL2/2, andS the number of particles falling in the pile b
unit of time, S5p0L. That is, tc'ZaL2/(2p0L)5L2/D,
whereD52p0L/Za can be interpreted as the averaged d
fusion coefficient andZa is the average gradient of the san
pile in steady state. Based on that, we can fit the calcula
confinement time as a power ofL and (p0L). The result of
the fit, Fig. 9, givestc56.8L1.2/(p0L)1.08. The power depen-
dence ofL is 1.2 instead of 2 in case of diffusion. Th

FIG. 7. Values ofn(n) for all cases considered. Forn,1, the
averaged value isn(n)50.7460.05 and n(n)50.5660.07 for
n.1.
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dependence is close to the expected 1/n'1.3560.1 from the
anomalous diffusion exponent. The connection between
local and global dependences will be further discussed
Sec. V. The whole distribution of particle transit times c
be rescaled byT0[L1.2/(p0L)1.08, and a universal function
is obtained. The rescaled PDFs are shown in Fig. 8.

IV. PROBABILITY DISTRIBUTION FUNCTION
OF FLIGHTS AND TRAPPING TIME

In a given particle orbit, each time period that a partic
spends at a fixed location is called trapping time. We ca
flight the radial length traveled by a particle between tra
ping times. We can calculate the PDF of trapping tim
c(t), and PDF of flights,W(x), by following many particle
orbits. One of the problems in this calculation is the fin
size of the sandpile. To have an understanding of how fin
size affects the PDF, we have done calculations for differ
sandpile lengths. Then, a way to take into account the fin
size scaling of the PDF is to rescale it. Let us assume
P(t,L) is the PDF for either the trapping times and/or t

FIG. 8. PDF of transit times for four different sandpile length
The PDFs have been rescaled byT0[L1.2/(p0L)1.08.

FIG. 9. Dependence of the mean value of the transit time,
particle confinement time,tc , on T0 .
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PRE 60 4775ANOMALOUS DIFFUSION IN A RUNNING SANDPILE MODEL
flights; we look for a functiong, such as

P~ t,L !5L2āLgS t

L āLD . ~6!

Furthermore, we can take into account the dependenceL
and onp0 by using the rescaling transformation:

P~ t,L,p0!5p0
2apL2aLFS t

p0
apLaLD . ~7!

The calculated PDFs of the trapping time,c(t), are
shown in Fig. 10. The calculation is done for a running sa
pile with the same parameters as the previous calculati
that isNf53, andZcrit510. Four sandpile lengths have be
considered,L5100, 316, 1000, and 5000. In varyingL, we
have first maintained a constant particle flux, that is,Lp0
51.0. The figure shows a clear change in the PDF withL.
Using Eq.~6!, the PDFs have been rescaled. From the r
caling, we concluded thatāL'0.4. The rescaled PDFs base
on this value forāL are shown in Fig. 11. This figure indi
cates that a universal function ofgt may exist.

We have also calculated the PDF for different values
p0 in the range 0.0002<p0<0.01 and considered a rescalin
as given by Eq.~7!. The result of rescaling the PDF of trap
ping times is shown in Fig. 12. The scaling exponents
tained areaL'20.8 andap'21.2. In this case, the valu
of aL is different fromāL because, in the previous calcul
tion, when we changedL we were also changingp0 to keep
Lp051.0. From this condition, we have the relationāL
5aL2ap , which is verified by the numerical values. Agai
from Fig. 12 we see that a universal functionFt may exist.

We expect that for values oft in the range 1!t, the PDF
of trapping times has an algebraic tail,

c~ t ![P~ t,L,p0!}
1

tb t
. ~8!

Figure 12 also shows that the PDF has such asymp
algebraic dependence that it is well defined over three
cades. The value of the decay exponent isb t51.7560.2.

FIG. 10. PDF of trapping time for different sandpile lengths.
-
s,

s-

f

-

tic
e-

A similar rescaling exercise can be carried out with t
PDF of the flights lengths,W(x). In this case, the depen
dence on the sandpile length is even more critical. For
trapping time, we can get long trapping time values by ru
ning the sandpile for very long times, even if the length
the sandpile is short. The situation is different for the parti
flights; the flight length cannot be larger thanL. Furthermore,
for flights close to the sandpile length, boundary effects
important. For the sameL scan of Fig. 8, Fig. 13 shows tha
the flight’s PDF has a dependence on the sandpile size. H
ever, there is observable dependence onp0 . Therefore, by
using the rescaling of Eq.~7! with aL50.5 andap'0, we
obtain the invariant functionFx for the flights. This function
is shown in Fig. 14. Although there is clear superposition
PDFs for all cases considered, the functionFx does not have
an obvious region of algebraic tail. Therefore, the flig
lengths are not the right variable to describe the s
similarity properties of the particle trajectories if they exis

The character of the plot in Fig. 14 changes by doing

FIG. 11. Rescaled PDF of trapping time to incorporate the fin
size scaling.

FIG. 12. Rescaled PDF of trapping time to incorporate the fin
length scaling.
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simple coordinate transformation,j5x1x0 , where x0
50.5LaL. The new graph has been represented in Fig.
From this figure and forx0,j,x01L,

W~j!}1/jbx, ~9!

and there is a clear algebraic region over at least one de
with a decay indexbx52.160.1. For the largest values ofj,
the slope probably changes due to the edge boundary ef
The variable j is a good variable to express the se
similarity properties of the particle dynamics in a sandp
This problem has not appeared in the transport calculat
because we always consider differences in coordinate p
tions. In this case,x andj are equivalent.

We have also examined the correlation between fli
lengths and trapping time along a given particle trajecto
For all cases considered, only a very weak anticorrelation
about 2% has been found. Therefore, at lowest order, we
assume that flights and trapping times are uncorrelated.

V. INTERPRETATION OF THE NUMERICAL RESULTS

In this section, we would like to demonstrate that t
numerical results of Secs. III and IV can be interpreted us

FIG. 13. PDF of flight lengths for different sandpile lengths.

FIG. 14. Rescaled PDF of flight lengths to incorporate the fin
size scaling.
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fractional kinetic equations@16,17#. Equations~1! and ~2!
can be considered as the equations of motion of a dynam
system that possesses chaotic evolution due to its nonli
properties and randomized driving forces. The scaling pr
erties of the observable data can be characterized by the
of trapping time,c(t), with the asymptotic form given by
Eq. ~8!, and the PDF of flight lengths,W(x), with the
asymptotic form given by Eq.~9!. An adequate framework
for the interpretation of the dynamics can be based eithe
the fractional kinetics@16,17# or on the continuous time ran
dom walk ~CTRW! method @18#. The latter operates with
two basic probability functions: the probability densi
W(x), to make a step of the lengthxP(x,x1dx), and the
probability densityc(t), to have time intervaltP(t,t1dt)
between two consequent steps. BothW(x) andc(t) are nor-
malized to one. It is convenient to introduce their respect
Fourier and Laplace transforms:

W~q!5
1

2p E
2`

`

eiqxW~x!dx,

~10!

c~u!5E
0

`

c~ t !e2utdt.

We may interpret the functionsc(t) andW(x) as PDFs for
waiting timet of the moving sand particle and lengthx of the
particle flight between two consequent waiting periods. T
waiting time used in the CTRW theory is the same as
trapping time of a particle defined in Sec. III.

In the CTRW theory, a probability density,P(x,t), to find
a particle at the positionx at time instantt is introduced. This
function P(x,t) satisfies the equation

@12c~u!W~q!#P~q,u!5
1

u
@12c~u!#, ~11!

where P(q,u) is the Fourier and Laplace transform o
P(x,t),

e

FIG. 15. Rescaled PDF of the shifted flight lengths showing
algebraic tail.
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P~q,u!5
1

2p E
0

`

d te2utE
2`

`

dx eiqxP~x,t !. ~12!

An equation similar to Eq.~11! and based on the CTRW
was used in Ref.@12# to obtain a distribution of the trans
time for the Oslo sandpile, with tracers that may be mov
from the moment of their insertion. There are several p
sible solutions of Eq.~11! that depend on the original dy
namical model, on the boundary and initial conditions, a
on other properties relevant to the dynamic features of
model. Here we consider a simplified version of Eq.~11! by
taking the asymptotic forms of the PDFsc(t) and W(x)
when t→` and x→` independently. In the transforme
variables, this corresponds to the limitu→0 andq→0. The
corresponding form of the distribution functions is

c~u!511Bub,
~13!

W~q!512Auqua.

HereA andB are constants, and the exponentsa andb are
restricted to be within some intervals@a# and @b#, respec-
tively. These intervals will not be specified here. For mo
details see Ref.@11#. Note that here the limitx→` implies
x@1, butx,L because of the finite size of the sandpile.

The fractional valuesa andb and the corresponding frac
tional powers in Eq.~13! express the singular character a
self-similarity of the dynamical process considered here
the approximation given by Eq.~13!, the kinetic equation,
Eq. ~11!, can be rewritten as

~Auqua2Bub!P~q,u!5Bub21, ~14!

where we have neglected the productuquaub. We can use
Eq. ~14! to directly calculate moments of the PDF of partic
positions,

^uxua&5Ctb, ~ t→`! ~15!

whereC5B/A, and the angular bracket^ & indicates space
averaged over the PDF, that is

^xp&5E dx xpP~x,t !. ~16!

Assuming self-similarity of the PDF,P(x,t), P(x,t)
5t2nF(x/tn), we can write

^x2n&;t2nb/a5tmn. ~17!

Here, the exponentm is defined as

m52b/a. ~18!

Equations~17! and ~18! describe the self-similarity propert
of P(x,t). The situation can be more complicated@14# when
the self-similarity of the core part ofP(x,t) is different from
the tail self-similarity. In this case, another exponentm̄ may
be needed to describe then,1 moments, with a crossove
between the two regimes nearn51, just as it is observed in
Fig. 6.

Let us rewrite the evolution equation for the PDF of E
~14! in the form of the fractional kinetic equation@16,17#
g
-

d
e

n

.

]bP~x,t !

]tb 5C
]aP~x,t !

]uxua
1

t2b

G~12b!
d~x!, ~ t.0!,

~19!

where the second term in the right-hand side of this equa
is a source term. To compare the results of the theory to
simulation, let us transform the asymptotic form of the PD
as given by Eq.~13! in the previous~x,t! coordinates. It
follows from Eq. ~10! and the asymptotic forms adopted
Eq. ~13! that

W~x!;A/uxu11a, c~ t !;B/t11b. ~20!

These asymptotic forms for the two PDFs can be compa
to Eqs.~8! and ~9!. This comparison gives

bx511a, b t511b ~21!

or after substitution of Eq.~21! in Eq. ~18!,

m52~b t21!/~bx21!. ~22!

For the particular values of the decay indices obtained in
numerical calculations,b t51.7560.2 ~Fig. 8! and bx52.1
60.1 ~Fig. 13!, we can calculate the exponentm and obtain
m51.3660.11. This value is in good agreement with val
m52n'1.4860.1 obtained by using the averaged value
the exponentn from Fig. 7 withn,1.

In Fig. 16, we have plotted the PDF,P(x,t), as a function
of x for several values oft. From this figure, it follows that
P(x,t) behaves as a power over almost all of interval (0,L),
with a strong change of the slope just near the boundarx
5L. We can assume that the sharp increase in the slop
the small intervalDx is caused by a boundary effect. T
avoid the influence of the boundary in evaluating the tra
port exponent, one can consider moments ofP(x,t) of the
order n,1. In this case, small values ofx give the main
contribution to the moments,^uxun&, while the contributions
of large values ofx are suppressed. In fact, this approa
removes some of the difficulties found in the interpretati
of numerical calculations for a sandpile of finite length.

FIG. 16. PDF,P(x,t), of the particle tracers positions in a san
pile at severalt. The calculation is for a sandpile withL51000,
Nf53, andZcrit510.
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From the rescaling of the trapping time, we have obtain
the characteristic time scaleT15L0.4(p0L)21.2, and from the
flights we have obtained the length scaleX15L0.5. Using
these time and length scales in Eq.~17!, we obtain a scaling
for the global confinement time, tc'T1(L/X1)2/m

'L1.13/(p0L)1.2. This scaling is very close to the empiric
one obtained in Sec. III by fitting the calculated values oftc .

Thus, we obtain the transport exponent,m, in Eq. ~18!
through the observable valuesbx andb t . It is worthwhile to
mention that some models impose additional connections
tween exponentsa and b, as occurred in the sticky island
hierarchy of some Hamiltonian maps@11,19#.

VI. CONCLUSIONS

To construct transport models based on the dynamics
sandpile model, we must determine the character of the
fusion. The study of particle tracers in a sandpile shows
the transport is superdiffusive. To determine the tra
.

d

e-

a
if-
at
-

port exponent, we have calculated several mome
^ux(t)2x(0)un&, of the distribution of the particle radia
and also their dependence on the elapsed ti
^ux(t)2x(0)un&5D0tnn(n). The use of moments withn,1
has been particularly useful in taking into account the fin
length effect of the sandpile.

The numerical calculations have led to a value of t
transport exponent,n(n)50.7460.05. This value is consis
tent with the determination of the transport exponent ba
on a theoretical interpretation of the transport using eit
fractional kinetics or the continuous time random wa
method.
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